Predicting Risk of Type 2 Diabetes by Using Data on Easy-to-Measure Risk Factors
نویسندگان
چکیده
INTRODUCTION Statistical models for assessing risk of type 2 diabetes are usually additive with linear terms that use non-nationally representative data. The objective of this study was to use nationally representative data on diabetes risk factors and spline regression models to determine the ability of models with nonlinear and interaction terms to assess the risk of type 2 diabetes. METHODS We used 4 waves of data (2005-2006 to 2011-2012) on adults aged 20 or older from the National Health and Nutrition Examination Survey (n = 5,471) and multivariate adaptive regression splines (MARS) to build risk models in 2015. MARS allowed for interactions among 17 noninvasively measured risk factors for type 2 diabetes. RESULTS A key risk factor for type 2 diabetes was increasing age, especially for those older than 69, followed by a family history of diabetes, with diminished risk among individuals younger than 45. Above age 69, other risk factors superseded age, including systolic and diastolic blood pressure. The additive MARS model with nonlinear terms had an area under curve (AUC) receiver operating characteristic of 0.847, whereas the 2-way interaction MARS model had an AUC of 0.851, a slight improvement. Both models had an 87% accuracy in classifying diabetes status. CONCLUSION Statistical models of type 2 diabetes risk should allow for nonlinear associations; incorporation of interaction terms into the MARS model improved its performance slightly. Robust statistical manipulation of risk factors commonly measured noninvasively in clinical settings might provide useful estimates of type 2 diabetes risk.
منابع مشابه
Predicting Type Two Diabetes and Determination of Effectiveness of Risk Factors Applying Logistic Regression Model
Background & Aim: Diabetes is one of the chronic diseases with no curative treatment; also, it is the most common cause of amputation, blindness and chronic renal failure and the most important risk factor of heart diseases. Logistic regression is one of the statistical analysis models for predicting that can be used to find out the relationship between dependent and predictor independent varia...
متن کاملEvaluation of Risk Factors for Type 2 Diabetes in Population Living in City of Yazd: A Case-Control Study
Introduction: Diabetes Mellitus (DM) is one of the most common chronic diseases in the world and the most challenging health problems of the twenty first century. This disease is common in Yazd and has a high prevalence in the province. Due to not available analytic study, the aim of this study was to determine the risk factors of type 2 diabetes among the adult Yazd population, Iran. Material...
متن کاملDesigning an intelligent system for diagnosing type 2 diabetes using the data mining approach: brief report
Background: Diabetes mellitus has several complications. The Late diagnosis of diabetes in people leads to the spread of complications. Therefore, this study has been done to determine the possibility of predicting diabetes type 2 by using data mining techniques. Methods: This is a descriptive-analytic study that was conducted as a cross-sectional study. The study population included people re...
متن کاملThe Effect of Aerobic Exercise on Cardiovascular Risk Factors in Women with Type 2 Diabetes
Objective: Cardiovascular complications are the major cause of reduced lifetime in diabetic patients. Given that physical activity can play an effective role in reducing these complications, the current study was conducted with the aim of examining the effects of 8 weeks of aerobic exercise on some cardiovascular risk factors in women with type 2 diabetes. Materials and Methods: Twenty women w...
متن کاملComparison of Four Data Mining Algorithms for Predicting Colorectal Cancer Risk
Background and Objective: Colorectal cancer (CRC) is one of the most prevalent malignancies in the world. The early detection of CRC is not only a simple process, but it is also the key to its treatment. Given that data mining algorithms could be potentially useful in cancer prognosis, diagnosis, and treatment, the main focus of this study is to measure the performance of some data mining class...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2017